Next: Axisymmetric Case
Up: Magnetohydrodynamics
Previous: Flux Freezing
  Contents
Basic equations are as follows:
The mass continuity as
![\begin{displaymath}
\frac{\partial \rho}{\partial t}+\mbox{\boldmath${\nabla}$} \cdot (\rho \mbox{\boldmath${v}$})=0,
\end{displaymath}](img1461.png) |
(B.7) |
the equation of motion as
![\begin{displaymath}
\rho\left(\frac{\partial \mbox{\boldmath${v}$}}{\partial t}+...
... + \frac{1}{4\pi}\mbox{\boldmath${(\nabla\times B)\times B}$},
\end{displaymath}](img1445.png) |
(B.8) |
the equation of thermal energy as
![\begin{displaymath}
\frac{\partial \epsilon}{\partial t}+{\rm div}(\epsilon+p){\bf v}=\rho {\bf v}\cdot {\bf g},
\end{displaymath}](img1462.png) |
(B.9) |
or some barotropic relation
and the induction equation as
![\begin{displaymath}
\frac{\partial \mbox{\boldmath${B}$}}{\partial t}=\mbox{\boldmath${\nabla \times (v\times B)}$}.
\end{displaymath}](img1451.png) |
(B.10) |
Kohji Tomisaka
2007-07-08