next up previous contents
Next: Axisymmetric Case Up: Magnetohydrodynamics Previous: Flux Freezing   Contents

Basic Equations of Ideal MHD

Basic equations are as follows: The mass continuity as

\begin{displaymath}
\frac{\partial \rho}{\partial t}+\mbox{\boldmath${\nabla}$} \cdot (\rho \mbox{\boldmath${v}$})=0,
\end{displaymath} (B.7)

the equation of motion as
\begin{displaymath}
\rho\left(\frac{\partial \mbox{\boldmath${v}$}}{\partial t}+...
... + \frac{1}{4\pi}\mbox{\boldmath${(\nabla\times B)\times B}$},
\end{displaymath} (B.8)

the equation of thermal energy as
\begin{displaymath}
\frac{\partial \epsilon}{\partial t}+{\rm div}(\epsilon+p){\bf v}=\rho {\bf v}\cdot {\bf g},
\end{displaymath} (B.9)

or some barotropic relation $p=P(\rho)$ and the induction equation as
\begin{displaymath}
\frac{\partial \mbox{\boldmath${B}$}}{\partial t}=\mbox{\boldmath${\nabla \times (v\times B)}$}.
\end{displaymath} (B.10)



Kohji Tomisaka 2007-07-08