next up previous contents
Next: Non-Local Thermal Equilibrium Up: Relation of Einstein's Coefficients Previous: Relation of Einstein's Coefficients   Contents

Relation between Einstein's Coefficients$^*$

Analysis using the Einstein's coefficients is applicable to the state in which the thermal equlibrium is not achieved. However, if this is applied to the thermal equlibrium, we can obtain relations between these coefficients.

Assume the detailed balance is achived between the spontaneous emission, the induced emission and the absorption as

\begin{displaymath}
N_{n_u}\left(A_{n_u\rightarrow n}+B_{n_u\rightarrow n}J_{n_...
...arrow n}\right)=N_{n}B_{n\rightarrow n_u}J_{n_u\rightarrow n}.
\end{displaymath} (2.144)

In the thermal equlibrium, the population of atoms is given by the Boltzmann distribution as
\begin{displaymath}
\frac{N_{n_u}}{N_n}=\frac{g_{n_u}}{g_n}\exp\left(-\frac{E_{n_u n}}{kT}\right),
\end{displaymath} (2.145)

where $g_n$ represents the statistical weight for the state n.

Equation (2.144) gives

\begin{displaymath}
\frac{N_{n_u}A_{n_u\rightarrow n}}{N_n}
=J_{n_u\rightarrow ...
...ightarrow n_u}-\frac{N_{n_u}}{N_n}B_{n_u\rightarrow n}\right).
\end{displaymath} (2.146)

In the case of thermal equilibrium, the average specific intensity agrees with the Planck function $B(\nu,T)$ as
\begin{displaymath}
J(\nu)=B(T,\nu)=\frac{2h\nu^3}{c^2}\frac{1}{\exp\left(h\nu/kT\right)-1},
\end{displaymath} (2.147)

Using equations (2.145) and (2.147), equation (2.144) reduces to
\begin{displaymath}
\frac{g_{n_u}}{g_n}A_{n_u\rightarrow n}=
\frac{2 h \nu^3}{c...
...rrow n}}{B_{n\rightarrow n_u}}}
{\exp\left(h\nu/kT\right)-1}.
\end{displaymath} (2.148)

Lefthabd-side of the equation is not dependent on the temperature. For this equation to be valid for various temperature,
\begin{displaymath}
\frac{g_{n_u}}{g_n}\frac{B_{n_u\rightarrow n}}{B_{n\rightarrow n_u}}=1,
\end{displaymath} (2.149)

and
\begin{displaymath}
\frac{g_{n_u}}{g_n}A_{n_u\rightarrow n}=
\frac{2 h \nu^3}{c^2}B_{n\rightarrow n_u}.
\end{displaymath} (2.150)


next up previous contents
Next: Non-Local Thermal Equilibrium Up: Relation of Einstein's Coefficients Previous: Relation of Einstein's Coefficients   Contents
Kohji Tomisaka 2007-07-08