... Formation1
http://yso.mtk.nao.ac.jp/~tomisaka/Lecture_Notes/StarFormation/4.pdf
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... them4.1
One of the reasons why large increase in the mass/flux ratio is favored is understood as follows: There have been a long-standing ``magnetic flux problem of stars'' in which the magnetic flux of, say, $1M_\odot$ main-sequence star $\Phi\sim XX{\rm G\,cm^2}$ is much smaller than that of the parent cloud $\Phi\sim XX{\rm G\,cm^2}$. The magnetic flux must be reduced in the star formation process. If the mass-flux ratio increases much in these density range, this might resolve the magnetic flux problem of stars.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...) 4.2
This means $A=2+\epsilon$ and $\epsilon>0$ and $\rightarrow 0$
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... stateC.1
Reference book for this appendix is chapter 4 of Chandrasekhar (1939).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.