セルの境界での物理量をセルの中央でのそれから内挿する方法を 考える。 に対して、物理量を 物理量uを内挿する。
ただし、
である。 右辺第3項でという項がつくのは、
であるから、この区間について、を積分して得た平均値と、 を等しくするためである。 このように区分多項式で近似したときの、 での値は、左つまりj側から補間すると、
右つまりj+1側から補間すると、
この表式はの値によって、異なった精度の内挿公式となっている。 とすると、
であるが、これから
であるから、この表式は空間2次精度になっていることがわかる。 従って、左からを外挿して得るのに適した風上の3点 (j-2、j-1、j)を使ってできる2次の完全風上差分 (2nd-order fully upwind)となっていることがわかる。
また、とすると、
となる。これが空間2次精度になっていることは誤差がとなって いることからわかり、式(2.27)が左側から内挿したときに、 風上側3点j-2、j-1、jと 風下側1点j+1をつかって表した2次精度の風上重点差分(2nd-order upwind biased) であることがわかる。
とすると、式(2.22)は
のように境界での値はその中央での値の算術平均に一致する。