next up previous contents
Next: Thin Shell近似法 Up: 近似的解法 Previous: シェルの膨張則   Contents

Hnatyk (Gnatyk) ¶á»÷

Figure: LagrangeË¡¤Ë¤è¤ë¡¢34×·âÇÈÌ̤ÎËÄĥ§¡£ 41#41¤ÎÌ©ÅÙʬÉÛ¤¬^234Äꤤì¤Æ¤¤¤ë¡£ 19#19¡¢20#20¡¢22#22¡¢42#42¤ËÂФ^1¤ë¤Î34×·âÇÈÌ̤Î^ÌÃÖ¤òÉ12¤·¤Æ¤¤¤ë¡£
543#543

Figure: Hnatyk¶á»÷¤Ë¤è¤ë¡¢34×·âÇÈÌ̤ÎÅÁȤÎÍͻҡ£ 544#544¤ÎÌ©ÅÙʬÉÛ¤¬^234Äꤤì¤Æ¤¤¤ë¡£ 44#44¡¢45#45¡¢46#46¡¢47#47¡¢...¡¢48#48¡¢ ¤Î»þÅÀ¤Î34×·âÇÈÌ̤Î^ÌÃÖ¤òÉ12¤·¤Æ¤¤¤ë¡£
545#545

Figure: van Leer ¤Îmonotinic scheme ¤Ç·×»»¤·¤¿¡¢ 546#546¤ÎÊ¿^1ÔÂç¤Ãæ¤ÎÅÀ¸ »Çúȯ¤Î^2ò¡Ê14ÂÀþ¡Ë¤È¡¢ Hnatyk¶á»÷¤Ë¤è¤ë¡¢34×·âÇÈÌ̤ÎÅÁÈ¡ÊÇËÀþ¡Ë¤ÎÈæ^3Ó¡£ ¥^¥é¥Õ¤Îñ^̤Ç50#50¤ËÅö¤¿¤Ã¤Æ¤^a¤ê¡¢ 44#44¡¢51#51¡¢52#52¡¢48#48¡¢ ¤Î»þÅÀ¤Î34×·âÇÈÌ̤Î^ÌÃÖ¤ò¤12¤ì¤34¤ìÈæ^3Ó¤·¤Æ¤¤¤ë¡£
547#547

14«¸ ÊÁê»÷^2ò¤«¤é´üÂÔ¤¤ì¤ë34×·âÇÈÌ̤ÎÅÁȤÏ16#16¤Î34ì^1ç¤Ï

548#548 (2.137)

¤Ç¡¢34×·âÇÈÌ̤¬ÄÌ^2á¤^1¤ëÁ^¤ÎÌ©ÅÙʬÉÛ¤¬÷Î¥¤ÎÑÑ34è¤ËÈæÎã¤^1¤ë34ì^1ç¡¢¤^1¤Ê¤ï¤Á
549#549 (2.138)

¤Ç¤¢¤ë»þ¤Ï¡¢
550#550 (2.139)

¤Ç¤¢¤ë¡£ 361#361¤òÁý^2䤻¤Æ¤¤¤Ã¤¿»þ¤Ë¡¢ 551#551(22#22)¡¢ 552#552(42#42)¤Î¤è¤¦¤Ë 34×·âÇȤ¬¤É¤ó¤É¤ó^2ä¤ì¤Æ¤¤¤¯¤Î¤À¤í¤¦¤«¡£

¿ôÃÍ·×»»¤Ë¤è¤ì¤Ð¤12¤ì¤ÏÈݤǤ¢¤ë¡£ ¿Þ2.16¤Ë¡¢Æ±¤¸ ¥¨¥Í¥ë¥¡14¤ÎÅÀ¸ »Çúȯ¤¬¯¤^3¤Ã¤¿¸ å¤Î 34×·âÇÈÌ̤Î^ÌÃÖ¤ò»þ´Ö¤Î´Ø¿ô¤È¤·¤Æ14¨¤·¤¿¡£ ¤^3¤^3¤Ç¡¢361#361¤ÏÌ©ÅÙʬÉÛ¤ÎÑѤòÉ12¤^1¡£ 311#311¤Ç¤Ï14^(2.139)¤Ç14¨¤^1ÑѤÏÎɤ¤¶á»÷¤Ç¤¢¤ë¤¬¡¢ 382#382¤Ç¤Ï14^(2.139)¤Ç14¨¤^1ÑÑ(42#42¤Ç¤Ï 552#552)¤Ï ÌÀ¤é¤«¤Ë¡¢^2äθ ú^2̤ò^2á34ê¤Ë¸ «ÀѤâ¤Ã¤Æ¤^a¤ê¡¢ 553#553¤¬Îɤ¤¶á»÷¤òÍ¿¤¨¤Æ¤¤¤ë¤^3¤È¤¬¤ï¤«¤ë¡£

¤12¤^3¤Ç¡¢Klimishin¤ÈGnatyk(1982: Astrophysica 17,306)¤Ï¡¢£±14¡¸ ¤Î¿ôÃÍ·× »»·ë^2̤ò¡¢ 34×·âÇȤ¬¸ ^o¤¤ì¤ë34ì^1ç¡¢311#311¤Ç¤Ï 554#554¤Ç 34×·âÇȤ¬^2ä¤ì¤ë34ì^1ç¡¢312#312¤Ç¤Ï 555#555¤Ç ¶á»÷¤Ç¤¤ë¤^3¤È¤ò14¨¤·¤¿¡£ ¤Ä¤Þ¤ê¡¢34×·âÇȤ¬^2ä¤ì¤ë34ì^1ç¡¢·è¤·¤Æ14^(2.139)¤Ç14¨¤^1ÑÑ 34è¤ÎËÄĥ§ 556#556¤Þ¤Ç^2ä¤ì¤ë¤^3¤È¤Ï¤Ê¤¯¡¢ ¤â¤Ã¤È¤æ¤Ã¤¯¤ê¤ÈÁý^2䷤Ƥ椯¤^3¤È¤ò¤^3¤Î¤è¤¦¤Ë¶á»÷¤·¤¿¡£

¤^3¤Î·ë^2̤ÏËÄÄ¥ÂÅÙ557#557¤¬

558#558 (2.140)

¤ÇÉ12¤¤ì¤ë¤^3¤È¤ÈÂбþ¤·¤Æ¤¤¤ë¡£

¤12¤^3¤Ç¡¢Hnatyk¤ÈPetruk(1999 Astron. Astrophys 344, 295)¤Ï¡¢

  1. 559#559¤ÇÄêÁ¤¤ì¤ë¥í¡14¥«¥ë¤ÊÌ©ÅÙʬÉÛ¥¤¥ó¥Ç¥Ã¥¯¥^1 361#361¤¬¸ ^o¤ò14¨¤^1¤«(Çúȯ¤Î34ì^1ç311#311)¡¢^2äò14¨¤^1¤«(312#312)¤Ç¡¢¤12¤ì¤34¤ì¡¢ 14^(2.14034å)¡¢14^(2.140^214)¤ò¤È¤ë¡£
  2. 12é´ü¤Ë¤Ï^ìÍÍÌ©ÅÙ¤ÎʬÉÛÃæ¤òÅÁȤ^1¤ë¤È^234Äê¤^1¤ë¤È12é´ü¤Ë¤Ï 560#560 ¤Ç¤¢¤ê¡¢22#22¤È¤Ê¤Ã¤¿»þÅÀ¡Ê561#561¡Ë¤Ç¡¢
    562#562 (2.141)

    ¤Ë34è¤ê^ܤ롣
  3. 34å¤ÎËÄÄ¥ÂÅÙ¤Ç34×·âÇÈÌ̤Î^3Æ¡^1¤ÎÉôʬ¤¬ËÄÄ¥¤ò¤^1¤ë¡£
¤È¤¤¤¦^234Äê¤òÃÖ¤¤¤Æ¡¢546#546¤ËÈæÎã¤^1¤ëÌ©ÅÙʬÉÛ¤ÎÃæ¤Ç¤Î¡¢ÅÀ¸ »Çúȯ¤Î ·ë^2ÌÀ¸ ¤¸ ¤¿34×·âÇȤÎÅÁȤò¶á»÷·×»»¤·¤¿¡£


563#563 (2.142)

¤ËÂФ·¤Æ¤Ï¡¢564#564¤ò451#45114´¤ÈÆ^·Â294#294Êý¸ þ¤Î´Ö¤Î^3ѤȤ^1¤ë¤È¡¢
565#565 171#171 566#566 (2.143)
  171#171 567#567 (2.144)

¤Ç¤¢¤ë¤«¤é¡¢ 568#568¤È¤Ê¤ë¤Î¤Ï¡¢ 569#569¤Î»þ¤Ç¤¢¤ë¡£

Ä^1¤¤ÎÂåÉ12Å^a¤ÊÃͤò35#35¤Ë¤È¤ê¡¢570#570¡¢571#571¤Î¤è¤¦¤Ê¬^3Ê^212¤¤ì¤¿ Ä^1¤¤òÍѤ¤¡¢ ÂåÉ12Å^a¤Ê»þ´Ö¤ò 572#572¤Î¤è¤¦¤Ë¤È¤ë ¡Ê¤^3¤ì¤Ï^ìÍÍÌ©ÅÙ¤ÎÃæ¤Ç34×·âÇÈÌ̤Î÷Î¥¤¬35#35¤ËÅþã¤^1¤ë»þ´Ö¡¢ ¤^1¤Ê¤ï¤Á 573#573¤¬À¤êΩ¤Ä»þ´Ö¤È¤·¤ÆÄêÁ¤¤ì¤Æ¤¤¤ë¡Ë¡£ ¤^3¤ì¤Ë¤è¤Ã¤Æ»þ´Ö¤Ï¡¢574#574¤È¬^3Ê^212¤¤ì¡¢ ¤¤é¤ËÂÅÙ¤Ï575#575¤òÍѤ¤¤Æ¬^3Ê^212¤¤ì¤ë¡£ ^ìÍÍÌ©ÅÙ¤ÎÃæ¤ÇËÄÄ¥¤^1¤ë34×·âÇÈÌ̤δ֤ǤÎ÷Î¥¤Ï

576#576 (2.145)

¤ÈÉ12¤¤ì¤ë¤«¤é¡¢Klimishin¤ÈGnatyk¤Î¶á»÷¤òÍѤ¤¤ë¤È¡¢¸ ^oÂ¥Õ¥§¡14¥^o¤Ç¤Ï ËÄÄ¥ÂÅ٤˴ؤ·¤Æ¡¢
577#577 (2.146)


578#578 (2.147)

¤¬À¤êΩ¤Ä¤^3¤È¤¬¤ï¤«¤ë¡£ ¤^3¤ì¤«¤é¡¢¸ ^o¤«¤é^2ÃÂËÄÄ¥¤Ø^ܤëÅÀ 569#569 ( 579#579)¤Ç¤Ï
580#580 (2.148)

¤ÇÍ¿¤¨¤é¤ì¡¢¤12¤ì^Ê^1ß¡¢
581#581 (2.149)

¤ÇÍ¿¤¨¤é¤ì¤ë¡£ ¤^3¤ì¤ò¡¢¿Þ¤ËÉÁ¤¯¤È¿Þ2.17¤ÎÍͤˤʤ롣 ¤Þ¤¿¡¢¤^3¤ÎÅÁȤÎÍͻҤò£^214¡¸ 14´ÂÐ34ΤÎvan Leer¤Îmonotonic scheme¤òÍѤ¤¡¢ 582#582¤ÎÊ¿^1ÔÊ¿ÈÄÂç¤Ãæ¤Ç¤ÎÅÀ¸ »Çúȯ¤Î¿Ê^212¤òÈæ^3Ó¤·¤¿ ¡Ê¿Þ2.18¡Ë¡£ ¤^3¤ì¤«¤é¤Ï¡¢¤Þ¤À34×·âÇȤÎ^2äˤĤ¤¤Æ^2á34ê¤ËÉ34^2Á¤·¤Æ¤¤¤ë¤è¤¦¤Ç¤¢¤ë¡£

Figure: ¥·¥§¥ë¶á»÷¤ò^1ԤʤäÆá¤á¤¿39#39¤ÎËÄĥ§¡Ê^o¸ ¡Ë¤È34×·âÇÈÌÌ53#53¤ÎËÄĥ§¡Ê±¦¡Ë¡£ Koo ¤ÈMcKee (1990)¤è¤ê¡£¡ÊÈà¤é¤Ï54#54¤ÎÄêÁ¤¬ 55#55Äê¿ôÇܤÀ¤±^ۤʤäƤ¤¤ë¤Î¤Ç¡¢ ¿Þ2.14¤ò^o¸ ¤ØÊý¸ þ¤Ø 56#56ÇܤÀ¤±¥·¥Õ¥È¤^1¤ì¤Ð¡¢ ¤^3¤Î^o¸ ¦¤Î¿Þ¤È12Ťʤ롣¡Ë 426#426¤ÎÌ©ÅÙʬÉۤǡ¢ÅÀ¸ »Çúȯ¤ËÂбþ¤^1¤ë¤â¤Î¡£ 34×·âÇÈÌ̤Ï58#58^Ê^1ßÞ¤Ë^2ä¤ì¤ë¤¬¡¢¥·¥§¥ë¤Î12Å¿´¤Ï 59#59^Ê^1ߤæ¤Ã¤¯¤ê¤È¤·¤«^2ä¤ì¤Ê¤¤¡£
583#583
Figure: ¥·¥§¥ë¶á»÷¤ò^1ԤʤäÆá¤á¤¿39#39¤ÎËÄĥ§¡Ê^o¸ ¡Ë¤È34×·âÇÈÌÌ53#53¤ÎËÄĥ§¡Ê±¦¡Ë¡£ 426#426¤ÎÌ©ÅÙʬÉۤǡ¢¥¦¥¤¥ó¥É¤ËÂбþ¤^1¤ë¤â¤Î¡£ 34×·âÇÈÌ̤Ï60#60^Ê^1ßÞ¤Ë^2ä¤ì¤ë¤¬¡¢¥·¥§¥ë¤Î12Å¿´¤Ï 61#61^Ê^1ߤæ¤Ã¤¯¤ê¤È¤·¤«^2ä¤ì¤Ê¤¤¡£
584#584


next up previous contents
Next: Thin Shell近似法 Up: 近似的解法 Previous: シェルの膨張則   Contents
Kohji Tomisaka 2005-03-24