Next: Thin Shell近似法
Up: 近似的解法
Previous: シェルの膨張則
  Contents
Figure:
LagrangeË¡¤Ë¤è¤ë¡¢34×·âÇÈÌ̤ÎËÄĥ§¡£
41#41¤ÎÌ©ÅÙʬÉÛ¤¬^234Äꤤì¤Æ¤¤¤ë¡£
19#19¡¢20#20¡¢22#22¡¢42#42¤ËÂФ^1¤ë¤Î34×·âÇÈÌ̤Î^ÌÃÖ¤òÉ12¤·¤Æ¤¤¤ë¡£
543#543 |
Figure:
Hnatyk¶á»÷¤Ë¤è¤ë¡¢34×·âÇÈÌ̤ÎÅÁȤÎÍͻҡ£
544#544¤ÎÌ©ÅÙʬÉÛ¤¬^234Äꤤì¤Æ¤¤¤ë¡£
44#44¡¢45#45¡¢46#46¡¢47#47¡¢...¡¢48#48¡¢
¤Î»þÅÀ¤Î34×·âÇÈÌ̤Î^ÌÃÖ¤òÉ12¤·¤Æ¤¤¤ë¡£
545#545 |
Figure:
van Leer ¤Îmonotinic scheme ¤Ç·×»»¤·¤¿¡¢
546#546¤ÎÊ¿^1ÔÂç¤Ãæ¤ÎÅÀ¸ »Çúȯ¤Î^2ò¡Ê14ÂÀþ¡Ë¤È¡¢
Hnatyk¶á»÷¤Ë¤è¤ë¡¢34×·âÇÈÌ̤ÎÅÁÈ¡ÊÇËÀþ¡Ë¤ÎÈæ^3Ó¡£
¥^¥é¥Õ¤Îñ^̤Ç50#50¤ËÅö¤¿¤Ã¤Æ¤^a¤ê¡¢
44#44¡¢51#51¡¢52#52¡¢48#48¡¢
¤Î»þÅÀ¤Î34×·âÇÈÌ̤Î^ÌÃÖ¤ò¤12¤ì¤34¤ìÈæ^3Ó¤·¤Æ¤¤¤ë¡£
547#547 |
14«¸ ÊÁê»÷^2ò¤«¤é´üÂÔ¤¤ì¤ë34×·âÇÈÌ̤ÎÅÁȤÏ16#16¤Î34ì^1ç¤Ï
¤Ç¡¢34×·âÇÈÌ̤¬ÄÌ^2á¤^1¤ëÁ^¤ÎÌ©ÅÙʬÉÛ¤¬÷Î¥¤ÎÑÑ34è¤ËÈæÎã¤^1¤ë34ì^1ç¡¢¤^1¤Ê¤ï¤Á
¤Ç¤¢¤ë»þ¤Ï¡¢
¤Ç¤¢¤ë¡£
361#361¤òÁý^2䤻¤Æ¤¤¤Ã¤¿»þ¤Ë¡¢
551#551(22#22)¡¢
552#552(42#42)¤Î¤è¤¦¤Ë
34×·âÇȤ¬¤É¤ó¤É¤ó^2ä¤ì¤Æ¤¤¤¯¤Î¤À¤í¤¦¤«¡£
¿ôÃÍ·×»»¤Ë¤è¤ì¤Ð¤12¤ì¤ÏÈݤǤ¢¤ë¡£
¿Þ2.16¤Ë¡¢Æ±¤¸ ¥¨¥Í¥ë¥¡14¤ÎÅÀ¸ »Çúȯ¤¬¯¤^3¤Ã¤¿¸ å¤Î
34×·âÇÈÌ̤Î^ÌÃÖ¤ò»þ´Ö¤Î´Ø¿ô¤È¤·¤Æ14¨¤·¤¿¡£
¤^3¤^3¤Ç¡¢361#361¤ÏÌ©ÅÙʬÉÛ¤ÎÑѤòÉ12¤^1¡£
311#311¤Ç¤Ï14^(2.139)¤Ç14¨¤^1ÑѤÏÎɤ¤¶á»÷¤Ç¤¢¤ë¤¬¡¢
382#382¤Ç¤Ï14^(2.139)¤Ç14¨¤^1ÑÑ(42#42¤Ç¤Ï
552#552)¤Ï
ÌÀ¤é¤«¤Ë¡¢^2äθ ú^2̤ò^2á34ê¤Ë¸ «ÀѤâ¤Ã¤Æ¤^a¤ê¡¢
553#553¤¬Îɤ¤¶á»÷¤òÍ¿¤¨¤Æ¤¤¤ë¤^3¤È¤¬¤ï¤«¤ë¡£
¤12¤^3¤Ç¡¢Klimishin¤ÈGnatyk(1982: Astrophysica 17,306)¤Ï¡¢£±14¡¸ ¤Î¿ôÃÍ·×
»»·ë^2̤ò¡¢
34×·âÇȤ¬¸ ^o¤¤ì¤ë34ì^1ç¡¢311#311¤Ç¤Ï
554#554¤Ç
34×·âÇȤ¬^2ä¤ì¤ë34ì^1ç¡¢312#312¤Ç¤Ï
555#555¤Ç
¶á»÷¤Ç¤¤ë¤^3¤È¤ò14¨¤·¤¿¡£
¤Ä¤Þ¤ê¡¢34×·âÇȤ¬^2ä¤ì¤ë34ì^1ç¡¢·è¤·¤Æ14^(2.139)¤Ç14¨¤^1ÑÑ
34è¤ÎËÄĥ§
556#556¤Þ¤Ç^2ä¤ì¤ë¤^3¤È¤Ï¤Ê¤¯¡¢
¤â¤Ã¤È¤æ¤Ã¤¯¤ê¤ÈÁý^2䷤Ƥ椯¤^3¤È¤ò¤^3¤Î¤è¤¦¤Ë¶á»÷¤·¤¿¡£
¤^3¤Î·ë^2̤ÏËÄÄ¥ÂÅÙ557#557¤¬
¤ÇÉ12¤¤ì¤ë¤^3¤È¤ÈÂбþ¤·¤Æ¤¤¤ë¡£
¤12¤^3¤Ç¡¢Hnatyk¤ÈPetruk(1999 Astron. Astrophys 344, 295)¤Ï¡¢
-
559#559¤ÇÄêÁ¤¤ì¤ë¥í¡14¥«¥ë¤ÊÌ©ÅÙʬÉÛ¥¤¥ó¥Ç¥Ã¥¯¥^1
361#361¤¬¸ ^o¤ò14¨¤^1¤«(Çúȯ¤Î34ì^1ç311#311)¡¢^2äò14¨¤^1¤«(312#312)¤Ç¡¢¤12¤ì¤34¤ì¡¢
14^(2.14034å)¡¢14^(2.140^214)¤ò¤È¤ë¡£
- 12é´ü¤Ë¤Ï^ìÍÍÌ©ÅÙ¤ÎʬÉÛÃæ¤òÅÁȤ^1¤ë¤È^234Äê¤^1¤ë¤È12é´ü¤Ë¤Ï
560#560
¤Ç¤¢¤ê¡¢22#22¤È¤Ê¤Ã¤¿»þÅÀ¡Ê561#561¡Ë¤Ç¡¢
¤Ë34è¤ê^ܤ롣
- 34å¤ÎËÄÄ¥ÂÅÙ¤Ç34×·âÇÈÌ̤Î^3Æ¡^1¤ÎÉôʬ¤¬ËÄÄ¥¤ò¤^1¤ë¡£
¤È¤¤¤¦^234Äê¤òÃÖ¤¤¤Æ¡¢546#546¤ËÈæÎã¤^1¤ëÌ©ÅÙʬÉÛ¤ÎÃæ¤Ç¤Î¡¢ÅÀ¸ »Çúȯ¤Î
·ë^2ÌÀ¸ ¤¸ ¤¿34×·âÇȤÎÅÁȤò¶á»÷·×»»¤·¤¿¡£
¤ËÂФ·¤Æ¤Ï¡¢564#564¤ò451#45114´¤ÈÆ^·Â294#294Êý¸ þ¤Î´Ö¤Î^3ѤȤ^1¤ë¤È¡¢
565#565 |
171#171 |
566#566 |
(2.143) |
|
171#171 |
567#567 |
(2.144) |
¤Ç¤¢¤ë¤«¤é¡¢
568#568¤È¤Ê¤ë¤Î¤Ï¡¢
569#569¤Î»þ¤Ç¤¢¤ë¡£
Ä^1¤¤ÎÂåÉ12Å^a¤ÊÃͤò35#35¤Ë¤È¤ê¡¢570#570¡¢571#571¤Î¤è¤¦¤Ê¬^3Ê^212¤¤ì¤¿
Ä^1¤¤òÍѤ¤¡¢
ÂåÉ12Å^a¤Ê»þ´Ö¤ò
572#572¤Î¤è¤¦¤Ë¤È¤ë
¡Ê¤^3¤ì¤Ï^ìÍÍÌ©ÅÙ¤ÎÃæ¤Ç34×·âÇÈÌ̤Î÷Î¥¤¬35#35¤ËÅþã¤^1¤ë»þ´Ö¡¢
¤^1¤Ê¤ï¤Á
573#573¤¬À¤êΩ¤Ä»þ´Ö¤È¤·¤ÆÄêÁ¤¤ì¤Æ¤¤¤ë¡Ë¡£
¤^3¤ì¤Ë¤è¤Ã¤Æ»þ´Ö¤Ï¡¢574#574¤È¬^3Ê^212¤¤ì¡¢
¤¤é¤ËÂÅÙ¤Ï575#575¤òÍѤ¤¤Æ¬^3Ê^212¤¤ì¤ë¡£
^ìÍÍÌ©ÅÙ¤ÎÃæ¤ÇËÄÄ¥¤^1¤ë34×·âÇÈÌ̤δ֤ǤÎ÷Î¥¤Ï
¤ÈÉ12¤¤ì¤ë¤«¤é¡¢Klimishin¤ÈGnatyk¤Î¶á»÷¤òÍѤ¤¤ë¤È¡¢¸ ^oÂ¥Õ¥§¡14¥^o¤Ç¤Ï
ËÄÄ¥ÂÅ٤˴ؤ·¤Æ¡¢
¤¬À¤êΩ¤Ä¤^3¤È¤¬¤ï¤«¤ë¡£
¤^3¤ì¤«¤é¡¢¸ ^o¤«¤é^2ÃÂËÄÄ¥¤Ø^ܤëÅÀ
569#569
(
579#579)¤Ç¤Ï
¤ÇÍ¿¤¨¤é¤ì¡¢¤12¤ì^Ê^1ß¡¢
¤ÇÍ¿¤¨¤é¤ì¤ë¡£
¤^3¤ì¤ò¡¢¿Þ¤ËÉÁ¤¯¤È¿Þ2.17¤ÎÍͤˤʤ롣
¤Þ¤¿¡¢¤^3¤ÎÅÁȤÎÍͻҤò£^214¡¸ 14´ÂÐ34ΤÎvan Leer¤Îmonotonic scheme¤òÍѤ¤¡¢
582#582¤ÎÊ¿^1ÔÊ¿ÈÄÂç¤Ãæ¤Ç¤ÎÅÀ¸ »Çúȯ¤Î¿Ê^212¤òÈæ^3Ó¤·¤¿
¡Ê¿Þ2.18¡Ë¡£
¤^3¤ì¤«¤é¤Ï¡¢¤Þ¤À34×·âÇȤÎ^2äˤĤ¤¤Æ^2á34ê¤ËÉ34^2Á¤·¤Æ¤¤¤ë¤è¤¦¤Ç¤¢¤ë¡£
Figure:
¥·¥§¥ë¶á»÷¤ò^1ԤʤäÆá¤á¤¿39#39¤ÎËÄĥ§¡Ê^o¸ ¡Ë¤È34×·âÇÈÌÌ53#53¤ÎËÄĥ§¡Ê±¦¡Ë¡£
Koo ¤ÈMcKee (1990)¤è¤ê¡£¡ÊÈà¤é¤Ï54#54¤ÎÄêÁ¤¬
55#55Äê¿ôÇܤÀ¤±^ۤʤäƤ¤¤ë¤Î¤Ç¡¢
¿Þ2.14¤ò^o¸ ¤ØÊý¸ þ¤Ø
56#56ÇܤÀ¤±¥·¥Õ¥È¤^1¤ì¤Ð¡¢
¤^3¤Î^o¸ ¦¤Î¿Þ¤È12Ťʤ롣¡Ë
426#426¤ÎÌ©ÅÙʬÉۤǡ¢ÅÀ¸ »Çúȯ¤ËÂбþ¤^1¤ë¤â¤Î¡£
34×·âÇÈÌ̤Ï58#58^Ê^1ßÞ¤Ë^2ä¤ì¤ë¤¬¡¢¥·¥§¥ë¤Î12Å¿´¤Ï
59#59^Ê^1ߤæ¤Ã¤¯¤ê¤È¤·¤«^2ä¤ì¤Ê¤¤¡£
583#583 |
Figure:
¥·¥§¥ë¶á»÷¤ò^1ԤʤäÆá¤á¤¿39#39¤ÎËÄĥ§¡Ê^o¸ ¡Ë¤È34×·âÇÈÌÌ53#53¤ÎËÄĥ§¡Ê±¦¡Ë¡£
426#426¤ÎÌ©ÅÙʬÉۤǡ¢¥¦¥¤¥ó¥É¤ËÂбþ¤^1¤ë¤â¤Î¡£
34×·âÇÈÌ̤Ï60#60^Ê^1ßÞ¤Ë^2ä¤ì¤ë¤¬¡¢¥·¥§¥ë¤Î12Å¿´¤Ï
61#61^Ê^1ߤæ¤Ã¤¯¤ê¤È¤·¤«^2ä¤ì¤Ê¤¤¡£
584#584 |
Next: Thin Shell近似法
Up: 近似的解法
Previous: シェルの膨張則
  Contents
Kohji Tomisaka
2005-03-24